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1. INTRODUCTION

Speech imagery of electroencephalographic (EEG)-

based Brain Computer Interface (BCI) is significant

for people with motor disabilities, illnesses and

speech disorders. However, a reliable and efficient

performance of these BCI systems depends

strongly on the classification accuracy of speech

imagery. Therefore, the development of more

robust and consistent classification methods is

needed for improving communicating imagined

speech BCI systems.
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4. CONCLUSIONS

This study demonstrates a newly developed classification approach for decoding words during imagined

speech production. Classifying imagined speech from EEG data is a difficult task, however, as shown, it is

feasible to recognize features which distinguish words from information embedded in the EEG signals, with

fairly good accuracies. More applications of the algorithm on new EEG-based BCI data sets are required to

verify the aforementioned findings. Notwithstanding, the results are promising and may open a new

perspective on the further development of EEG-based BCI systems for communicating imagined speech.

2. METHODS

Imagery pronunciation of 3 words (“out”, “in”, “up”,

100 trials each, lasting for 5 sec) was performed by 5

subjects [1]. EEG data sets (publicly available [1]) of

64 electrodes were recorded (10-20 system) and

preprocessed (filtered and downsampled). The

filtered EEG data of 60 channels (4 rejected

containing EOG artifacts) were analyzed based on a

novel classification algorithm comprised of “three

pillars”: a) Operational Architectonics (OA) concept of

brain and mind functioning [2]. b) Complex network

measures of brain connectivity [3]. c) Machine

Learning for developing multi-class classifiers. In

particular, the off-line algorithm utilizes OA

framework for a non-parametric segmentation of the

filtered EEGs through the identification of abrupt

jumps in EEG amplitude, called Rapid Transition

Processes (RTPs). Subsequently, the time

coordinates of RTPs are used to find the number of

common RTPs in a trial with pairwise comparison of

each filtered EEG. Then, these numbers are used as

weights for the generation of weighted complex

networks (60 x 60 adjacency matrix), from which 12

measures of brain connectivity are estimated for

feature extraction. In the final step, these network

metrics, properly normalized, form the feature

vectors which are classified by a Naive Bayes

classifier used for the prediction of each class. The

results show that the overall mean classification

accuracies ranged approximately from 53.67% to

66.17% (10-fold cross validation procedure),

significantly above chance level (33.33%) in all

tested cases.
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3. RESULTS

SUBJECTS
ACCURACY (%)

(Chance Level = 33.33)

1 64.5 ± 7.6 (max = 83.33)

2 53.67 ± 7.7 (max = 66.67) 

3 58.167 ± 7.68 (max = 73.33)

4 66.167 ± 9.2 (max = 80)

5 61.5 ± 7.37 (max = 76.67)

Figure 1. An example of pairwise estimation of common RTPs between 2 electrodes for a trial. In particular, 7

common RTPs were estimated (denoted by red arrows) at times 42, 175, 242, 423, 1030, 1238, 1265.

Figure 2. An instance of a weighted complex network

generated for one trial. The number on the edges denotes

the weights of the adjacency matrix, while the number in the

nodes indicate the channels.

Table 3 Overall mean classification accuracies (percentages) for all subjects estimated based on 10-fold cross

validation procedure. The maximum accuracy is also shown in parentheses.

C1 C2 C3 C4 … C60

C1 0 7 4 4 ... 5

C2 7 0 6 2 … 3

C3 4 6 0 5 … 6

C4 4 2 5 0 … 7

… … … … … … ….

C60 5 3 6 7 … 0

Table 1 Weighted adjacency matrix estimated for one

trial, where the weights denote the common RTPs

between the 60 channels.

Mean 

Betweeness 

Centrality

Mean

Clustering 

Coefficient

Mean

Degree 

Centrality

Efficiency

…
Mean

Strength

“out” 61.0333 4.9495 10.4333 5.09 ... 112.8667

“in” 80.6861 4.6908 8.5667 4.4490 … 92.1000

“up” 42.1278 5.3246 8.6667 3.6418 … 95.2667

Table 2 Five of the 12 Network Features estimated for 3 trials corresponding to different tasks, namely imagery

pronunciation of “out”, “in”, “up”.


